
Using Machine Learning to Improve Gamma-Neutron Discrimination in 
6Li Glass and P-terphenyl Detectors

S.J. Andaloro*, J. Hooker, G.V. Rogachev
Cyclotron Institute, Texas A&M University, College Station, TX 77843 USA

CONTACT INFORMATION
Sophia Andaloro* sandaloro@udallas.edu 

University of Dallas, Irving, TX USA

REFERENCES
[1] F. Chollet, "Deep Learning with Python" (2018) 

[2] S. Yousefi et al, NIM A 598 551-555 (2009) 
[3]  S. Rashka, Linear Discriminant Analysis Blog (2014) 

[4] V. Lavrenko, PCA Lecture (YouTube)  (2014)

INTRODUCTION

CONCLUSION

RESULTS
We present machine learning (ML) methods that 
improve current neutron-gamma discrimina9on. In 
par9cular, we sought to improve current areas of 
overlap for neutron-gamma discrimina9on. To create 
data with known classifica9on, p-terphenyl crystal and 
6Li glass scin9llators were used to detect gammas, fast 
neutrons (p-terphenyl), and thermal neutrons (6Li glass). 
We use dimensionality reduc9on and neural networks 
for classifica9on and evaluate the methods. Addi9onally 
we study autoencoding methods for genera9ng 
datasets. We discuss their accuracy for neutron-gamma 
discrimina9on of both detectors, present dimensionality 
reduc9on methods that yield dis9nct neutron-gamma 
separa9on, and suggest the future of ML use in par9cle 
discrimina9on. 

ML is successful above 250 keV. Gamma inaccuracy 
significantly greater than 50% below 250 keV suggests that 
the source was too weak to overcome background (Fig 4). 
Hence, TOF discrimina9on misiden9fied background and 
fission products. Improving a priori iden9fica9on and 
reducing background using stronger sources or autoencoding 
will improve these methods beyond current limita9ons.

EXPERIMENTAL METHODS
6Li Glass Detector

P-terphenyl Detector
• P-terphenyl crystal (5cm) coupled 

to 2 PMTs + 252Cf 
‣ Detects fast neutrons and 

gammas; high scinAllaAon 
(104 photons/MeV) 

‣ Previous band separaAon only 
effecAve above 200 keV recoil

1. Artificial Neural Networks (ANNs)

• 6Li glass detector (3mm thick) + 252Cf 
• Polyethylene block reduces neutron 

energy to thermal levels 
• Lead: shields detector from gammas  
• No shielding: >99% pure gamma-

induced scinAllaAon

Fig. 1 (below) Lead shielding

While ML improved discriminaAon in both detectors, low-
energy limitaAons persist using p-terphenyl. Improving this 
requires a stronger fission source and beXer shielding. 
AlternaAvely, autoencoding can be used to generate pure 
datasets. ANNs and DR are both ideal for thermal neutron-
gamma discriminaAon. With future study, ML will likely 
improve fast neutron-gamma discriminaAon as well.
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Fig. 2 Charge (nC) vs Amplitude (V) (left: no shielding; right: Pb shielding)
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2. Dimensionality Reduction

The data contained trace amounts of misiden9fied par9cles 
due to background, so <100% accuracy was expected. Fig. 13 
shows that LDA misiden9fies neutrons in the thermal range, 
as LDA confusion matrix confirms. LDA was no9ceably weaker 
for thermal iden9fica9on, but provided beUer visualiza9on.
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Fig. 12 ANN results
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Fig. 13 LDA of waveforms

• Fission detecAon Ame of flight (TOF) experiment was 
performed for energy calibraAon and a priori idenAficaAon

Fig. 3 Waveforms, 600 keV recoil

Fig. 8 Metric value vs. epoch 

MACHINE LEARNING METHODS

LDA	Confusion	Matrix:ANN	Confusion	Matrix:

Fig. 6 ANN supervised learning via back-propagation[1] Fig. 7 NSNN structure

Pros:	Model can be tested easily; 
flexible training; controllable 

parameters 
Cons: Supervised; requires known 

classificaAon; may over-fit to training 
data

Input:	 
SequenAal-1: Waveforms 
Seq.-2: Wavelet transform 

values [2], charge, 
amplitude 

Layers:	
Seq.-1: ConvoluAonal 

layers (feature-mapping) 
Seq.-2: Dense training 

(combinaAons of previous 
layer neurons) 

Output:  
Binary (0,1)

Network	Op3miza3on	
• ValidaAon set: avoids overficng 
• Metrics: accuracy and loss 

funcAons 
• Hyper-parameters: manually 

opAmized user inputs 
‣ Learning rate (.0005), dropout 

(0.2), batch size (64), epochs 
(50-70) 

• Result of ANN: Metrics of unseen 
data test; trained ANN weights

Basic	Principles:	
• Layers of "neurons" weighted by 

effecAveness in classificaAon 
• Training epochs maximize accuracy, 

reduce loss by varying weights

— Acc
• Val_Acc

— Loss
• Val_Loss

*The confusion 
matrices list the 
accuracy of each 

method in 
characterizing 
gammas and 

neutrons. 

Waveforms transformed to eigenvalue via between-class and 
within-class covariance matrices using Linear Discriminant 
Analysis (LDA) 

• Pro: DisAnct class separaAon; used in conjuncAon with 
Principal Component Analysis (PCA) for downsampling 
1024-dimension waveforms 

• Con: Supervised method (requires classificaAon a priori)

gammas

neutrons

Fig. 5 Previous wavelet transform [2] band 
separation

Neutron 
Misidentification: 
LDA weak point

Fig. 14  NSNN class accuracy

Fig. 15  LDA class accuracy Fig. 17  LDA separation

Fig. 16 PCA separation

250 keV

• GeneraAon of waveforms from random noise, using 
training data passed through convoluAonal neural network 

• Purpose: combats experimental drawbacks, including 
noise, Ame of experiment, and uncertainty in a priori 
neutron-gamma discriminaAon  

• Current limitaAons: amplitude and noise matching

3. Autoencoding

Fig. 10. Autoencoding process, useful in image generation [1]
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Fig. 4  TOF histogram
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Fig. 9  PCA, LDA visualization [3]

Fig. 11  Generated waveforms over epochs vs. true waveform

Epochs	(η)=	0 η	=	1,000

η	=	5,000 η	=	20,000
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