

INTRODUCTION

We present machine learning (ML) methods that improve current neutron-gamma discrimination. In particular, we sought to improve current areas of overlap for neutron-gamma discrimination. To create data with known classification, p-terphenyl crystal and ⁶Li glass scintillators were used to detect gammas, fast neutrons (p-terphenyl), and thermal neutrons (⁶Li glass). We use dimensionality reduction and neural networks for classification and evaluate the methods. Additionally we study autoencoding methods for generating datasets. We discuss their accuracy for neutron-gamma discrimination of both detectors, present dimensionality reduction methods that yield distinct neutron-gamma separation, and suggest the future of ML use in particle discrimination.

- P-terphenyl crystal (5cm) coupled to 2 PMTs + ²⁵²Cf
 - Detects fast neutrons and gammas; high scintillation (10⁴ photons/MeV)
 - Previous band separation only effective above 200 keV recoil
- Fig. 3 Waveforms, 600 keV recoil
- Neutron Gamma
- Fission detection time of flight (TOF) experiment was performed for energy calibration and a priori identification

[2] S. Yousefi et al, NIM A 598 551-555 (2009) [3] S. Rashka, Linear Discriminant Analysis Blog (2014) [4] V. Lavrenko, PCA Lecture (YouTube) (2014)

Using Machine Learning to Improve Gamma-Neutron Discrimination in ⁶Li Glass and P-terphenyl Detectors

S.J. Andaloro*, J. Hooker, G.V. Rogachev Cyclotron Institute, Texas A&M University, College Station, TX 77843 USA

Pros: Model can be tested easily; flexible training; controllable parameters

Cons: Supervised; requires known classification; may over-fit to training

Waveforms transformed to eigenvalue via between-class and within-class covariance matrices using Linear Discriminant Analysis (LDA)

- Pro: Distinct class separation; used in conjunction with Principal Component Analysis (PCA) for downsampling 1024-dimension waveforms
- Con: Supervised method (requires classification a priori)

- Generation of waveforms from random noise, using training data passed through convolutional neural network
- Purpose: combats experimental drawbacks, including noise, time of experiment, and uncertainty in a priori neutron-gamma discrimination
- Current limitations: amplitude and noise matching

and fake images

Fig. 10. Autoencoding process, useful in image generation [1]

ACKNOWLEDGEMENTS

Supported by the following: NSF PHY-1659847, NNSA DOE DENA0003841, DOE DE-FGO2-93ER40773, and College of Science TAMU Strategic Transformative Research Program. I would like to thank Dr. Rogachev and his team for their support, especially Joshua Hooker, and Texas A&M Cyclotron Institute for hosting this research.

each	Predicted Class					Predicted Class	
n ing nd	Actual Class	thermal	γ		Actual Class	thermal	γ
	thermal	99.70%	0.30%		thermal	94.97%	5.03%
	γ	0.32%	99.68%		γ	0.02%	99.98%

gamma discrimination. With future study, ML will likely improve fast neutron-gamma discrimination as well.

CONTACT INFORMATION

Sophia Andaloro* sandaloro@udallas.edu University of Dallas, Irving, TX USA